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ABSTRACT 

Hey, Paul Andrew. M.S.M.E., Purdue University, December 1997. A CAD Methodology 
for Knowledge Assisted Design. Major Professor: David C. Anderson, School of 
Mechanical Engineering. 

Modern computer-aided design (CAD) systems have developed into integral support 

tools for the product design and development process. Designers must, however, draw 

upon experiential engineering knowledge such as past experiences, specific design rules 

and procedures, and heuristic reasoning just as before the advent of CAD. This work 

develops a methodology for integrating experiential engineering knowledge in an 

interactive CAD environment that serves as a knowledgeable design assistant and supports 

a design process controlled by the designer. 

The knowledge assisted design environment is an object-oriented, domain independent 

framework based on a blackboard architecture that incorporates a feature-based design 

environment with multiple, autonomous knowledge sources. The system can be utilized 

for any domain for which a set of features and knowledge sources have been defined. The 

knowledge sources provide design assistance by reacting opportunistically to a developing 

design solution and by presenting advice interactively to the designer. The object-oriented 

knowledge and hierarchical, feature-based model representations are presented along with 

the design environment and its functionality. The methodology is applied to the industrial 

application of engine flywheel design. 



CHAPTER 1 

INTRODUCTION 

Design is a cognitive process that requires a designer to apply both past experience and 

general engineering knowledge to achieve a completed product. Since the advent of 

computer-aided design (CAD) in the early 1960's, the computer has become an integral 

part of the product design and development process. Early CAD systems provided the 

capability to create two-dimensional engineering drawings to document a completed 

design. Using modern CAD systems, however, a designer can a construct a sophisticated 

three-dimensional solid model of the design artifact and perform complex engineering 

analyses on that model. These advances have significantly lessened the costs incurred 

during the design process by reducing the number of design cycle iterations to arrive at a 

completed design. 

Despite the utility of today's conventional CAD systems, their capabilities fall short of 

the original vision of the computer's role in the design process. Regarded as one of the first 

CAD systems, Sutherland's Sketchpad [SUTH63] sparked discussion of how the computer 

would support designers in the future. The systems were envisioned to act as intelligent 

design assistants and interactive support tools that would dynamically assist the designer 

throughout the design process. Conventional CAD systems, however, have only partially 

fulfilled that goal. The systems serve as sophisticated replacements for the slide-rules and 

drafting tables of the past and, because they are designed to support a wide range of 

engineering domains, inherently restrict the amount of design assistance they can provide. 

Rather than actively assisting the designer by playing an integral role in the design 



process, modern CAD systems have developed into geometric modeling and analysis tools 

that only partially support the design process. As shown in Figure 1-1, the designer must 

draw upon experiential engineering knowledge such as past experiences, specific design 

rules and procedures, and heuristic reasoning just as before the advent of CAD. 
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Figure 1-1. Conventional CAD Methodology 

1.1 Integrating Engineering Knowledge 

To move CAD closer to its original intent of serving as both support tool and 

intelligent design assistant, the design systems must be refined to include representations 

of low level engineering information, such as points and lines, and high level engineering 

information, such as material properties and functional properties, from which they can 

reason to provide the envisioned design assistance. Incorporating engineering knowledge 

into an interactive design environment provides the basis for developing a CAD system 

that serves as a knowledgeable design assistant. The environment will also serve as an 

engineering knowledge repository by maintaining important design rules and heuristics 

long after the designer responsible for contributing the design knowledge has left the 

organization. 

The requirements for the successful integration of engineering knowledge fall under 

three main categories: the product model, the design knowledge, and the design 



environment. First, the model of the design artifact must contain high level engineering 

content that allows the designer to express the engineering characteristics of the design 

beyond geometry alone. The designer must be able to accurately express the engineering 

attributes of the design model using terminology familiar to, and appropriate for, the 

design domain in which the designer is working. At the end of the design process, the 

model must also exist as a complete, stand-alone entity that is independent of the process 

that created it. 

Second, the representation of the design knowledge must be developed to interact with 

the model to provide active assistance during the design process. The knowledge must also 

express both the geometric and non-geometric engineering attributes of the design artifact 

and the design process in a terminology familiar to the designer. The knowledge 

representation must be adaptable to the varied knowledge utilized during the design 

process, and it must be developed to allow a designer to easily add new engineering 

knowledge to the pool of domain knowledge without the involvement of an outside source 

and a detailed understanding of the underlying design system functionality. 

Finally, a design environment must be developed in which the designer and the 

engineering knowledge can interact cooperatively to arrive at a satisfactory design. Most 

previous attempts at integrating experiential engineering knowledge and conventional 

CAD methodologies have resulted in automated, knowledge-based systems developed for 

specific domains that required the designer to provide only the initial design specifications 

for the design process to proceed. While automated design systems have proven to be 

successful in design domains where there is very little creativity and variety in the design 

process, the majority of engineering design fall outside that category. Attempts at 

automating a design process that involves any human cognitive capabilities have proven to 

have only limited applicability. Therefore, the design environment must be developed such 



that the designer is in complete control of the design process and the engineering 

knowledge provides interactive design assistance during the design process. 

1.2 Research Objectives 

The objective of this research is to develop a computer-aided design methodology for 

knowledge assisted design, as shown in Figure 1-2, that integrates engineering knowledge 

in an interactive design environment that serves as an interactive design assistant and 

dynamically supports a design process controlled by the designer. The goal is to develop a 

domain-independent framework that can be applied to varied domains by adding domain 

specific engineering knowledge to the design environment, as opposed to a general design 

system that can be used for any domain of engineering design. 
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Figure 1-2. Knowledge Assisted Design Methodology 

This primary goal can be divided into three tasks. First, a product model must be 

developed that allows the designer to adequately represent both the geometric and non- 

geometric attributes of an evolving design solution. The model structure must be easily 

extensible and sufficiently general to support as broad a range of domains as possible, and 

it must support interaction with the engineering knowledge to provide design assistance 

that actively supports the design process. Second, a knowledge representation must be 



developed that can also be easily applied to varied design domains and accurately 

represent the wide range of engineering knowledge utilized during the design process. 

Finally, a domain independent design system framework must be developed that 

incorporates the designer, the model, and the knowledge in an environment that allows the 

designer to dictate the process by which a product model is constructed while receiving 

dynamic, interactive design assistance from the engineering knowledge. 

1.3 Thesis Overview 

Chapter Two presents a discussion of past research efforts in the knowledge and model 

representation techniques and the integration of engineering knowledge and conventional 

CAD methodologies. The model and knowledge representations implemented for this 

research are discussed in Chapter Three. Chapter Four presents the framework for 

integrating these representations for knowledge assisted design. Chapter Five presents a 

prototype knowledge assisted design system applied to the specific domain of engine 

flywheel design. This system was developed for an actual industrial application to provide 

design assistance using Society of Automotive Engineers (SAE), International 

Organization for Standardization (ISO), and corporate design standards. Finally, Chapter 

Six provides concluding remarks and directions for future research. 



CHAPTER 2 

BACKGROUND AND PAST RESEARCH 

An examination of the past research efforts in related fields provides the background 

necessary to better understand the pertinent issues of developing a methodology for 

knowledge assisted design. The investigation of developing intelligent CAD systems for 

design assistance has been ongoing since computers were introduced into the realm of 

engineering design. Much of the research was directed towards the integration of 

engineering knowledge into CAD systems and the appropriate means to represent the 

engineering knowledge for the design environments. This chapter reflects on those 

previous efforts and identifies the key research issues for the development of a knowledge 

assisted design methodology. 

2.1 Artificial Intelligence in Design 

The first attempts at developing CAD systems that drew upon experiential engineering 

knowledge occurred during the growth of Artificial Intelligence (AI) in the late 1970's. As 

computers became more prevalent and powerful, a concerted research effort investigated 

the development of computer programs that behaved and performed actions like humans. 

AI offered CAD developers the tools to reason about engineering information in manners 

previously unavailable. The AI systems operated using sophisticated symbolic reasoning 

techniques and were developed in symbolic processing languages such as LISP and 

Prolog. These systems exhibited limited success and are still in use today primarily in 
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automated design and diagnostic systems. Despite their inherent trend towards design 

automation, the AI methodologies highlight some of the key aspects and provide some of 

the tools necessary for developing a useful design assistant system. 

2.1.1 Knowledge-Based Expert Systems 

The first AI systems used in design were knowledge-based expert systems (KBES), 

which attempt to integrate heuristic reasoning and general domain expertise into computer 

programs that behave as experts in their respective domain [AKMA94]. Researchers 

hypothesized that human experts reason from a set of learned rules and guidelines to arrive 

at a final design. KBES attempted to mimic this human reasoning process and offered 

automated design support. 

Working 
Memory 

Inference       j (    Knowledge 
Engine        f*       I Base 

Figure 2-1. The knowledge-based expert system structure 

The basic structure of the KBES, as shown in Figure 2-1, consists of three 

components: the knowledge base, the inference engine, and the working memory. The 

design process is controlled by the application of design rules and processes stored in the 

knowledge base. The inference engine contains the reasoning mechanisms by which the 

knowledge base is searched and specific rules are applied to answer queries concerning the 

design solution as it develops in the working memory. The distinctly separate inference 

engine and knowledge base allow for domain independent KBES shells that only required 

a new knowledge base to perform design in a particular domain [DIX095]. 
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KBES research and development concentrated in two areas: knowledge acquisition 

and inference engine reasoning algorithms. Knowledge acquisition, the gathering and 

coding of domain-specific rules, evolved into a very sophisticated process. Specialized 

knowledge engineers interviewed experts in the specific design domain, and attempted to 

acquire all of the appropriate rules and actions required to achieve a particular design. As 

the KBES moved from the beginning stages of addressing example design problems to 

attacking actual design problems, however, the size and complexity of the knowledge 

bases made the approach impractical. New inference engine reasoning algorithms were 

developed to accommodate the growth of the knowledge bases, and research focused on 

generating more efficient, sophisticated knowledge space search algorithms, conflict 

mitigation techniques, truth maintenance systems, and decision explanation facilities. 

The KBES represent the thought processes and cognitive abilities of humans as a 

collection of possible alternative decisions coded into the knowledge base. The results are 

design systems programmed to solve a very complex problem yet have difficulties solving 

simple problems within the same domain. In an attempt to represent fully the knowledge 

necessary to complete any fairly complex design task, the knowledge base grew into large, 

intricate decision trees that were difficult to maintain. The KBES also demonstrated brittle 

functionality. The solution process would fail if, during the design process, the input data 

was not specified in precisely the correct manner or a design solution developed that was 

not represented in the knowledge base. The addition or modification of any of the design 

rules required the entire knowledge base to be reprogrammed. 

The results of these research efforts led to several KBES for design. The PRIDE 

project presented in [MITT86] automated the design process for paper-handling systems 

in photocopiers, and [PACK94] implemented a KBES for the mold transport substructures 

at Sikorsky aircraft. The AIR-CYL system implemented an expert system for the design of 

air cylinders [BROW92]. Despite the limited success of these and other KBES, they have 



not proven to be adequate for providing active assistance during the design process. As 

[DUFF96a] argues, the process of integrating human expertise and CAD systems may 

lend itself to some form of automation, yet removing the designer from the design process 

eliminates the substantial benefits of a cooperative design effort between the designer and 

the computer and is also restrictive. 

2.1.2 Model-Based Reasoning 

A new reasoning methodology known as model-based reasoning emerged to overcome 

the inadequacies of the KBES. The model-based reasoning methodology is based on a 

different view of the human cognitive process during design then the KBES. In design, not 

all of the engineering information can be expressed in terms of if-then rules. Engineering 

design is based on physical models, mathematical formulae, fundamental engineering 

principles and imprecise subjective concepts. Model-based reasoning contended that 

searching the design space for the possible set of existing elemental representations to 

form the completed design was a more accurate representation of the human design 

process than reasoning by searching the possible set of design decisions as hypothesized 

for the KBES [FALT96]. 

The system structure for the model-based systems is very similar to that of the KBES. 

Instead of reasoning on a single set of rules, however, the inference engine searches a set 

of representations of the design artifact's components and their interactions based on 

mathematical and physical principles that described their function [GER088]. In response 

to initial input specifications from the designer, the system will iterate on the design 

parameters based on the current state of the design solution until an adequate design is 

achieved. 

Much of the research for applying model-based reasoning to design advanced the 

development of sophisticated languages to represent accurately the design artifact's 
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components and their interactions [JOSK96], [ROSE94]. The model-based reasoning 

approach was applied to a variety of design automated applications, from architectural 

design code verification [DYM88], to the design of small mechanical assemblies 

[GOEL89]. The intelligent boiler design system presented in [RIIT88] automated the 

boiler plant design process using the model-based reasoning methodology. The 

components of a boiler plant such as the pumps, pipes, circuit breakers, and conductors 

were represented within the design system. After the designer provided the initial 

functional specifications of the boiler plant, the design system arrived at a final plant 

design based on the component properties and interactions defined in the various 

component representations. 

The model-based reasoning methodology was successfully applied to the medical and 

system diagnosis fields [ABU94], [GOEL96]. Functional systems, such as the human 

vascular system or a chemical treatment facility, were represented in model-based 

diagnostic environments from which accurate diagnoses can be made. The actual system 

functionality was compared to the representation, and any deviations were presented to the 

user. The GUARDIAN system presented in [HAYE92], for example, supervised hospital 

intensive-care units and notified the supervising medical personnel if the units failed to 

perform their expected tasks. This model representation, however, did not fit well into the 

design assistance field because modeling the design process is not equivalent to modeling 

a functioning system. Design is an open-ended process that varies from one designer to 

another and can only be fully defined for a few design domains. 

The model-based systems provided an impetus for later AI-based CAD systems to 

shift from knowledge-based systems that based their functionality on the rules that 

controlled the design process to object-based systems that utilize domain knowledge to 

enhance the functionality of a design system based on the development and analysis of a 

product model. One of the main shortcomings of the KBES was their attempt to fully 
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define and control the design process using only knowledge about the domain without a 

clear representation of the design artifact. The model-based systems attempted to alleviate 

this problem by representing both the knowledge about the model and model itself in one 

knowledge resource. This trend progressed with the continued integration of AI and CAD. 

2.1.3 Case-Based Reasoning 

Case-based reasoning is an extension of the model-based reasoning methodology. 

Rather than providing representation based on fundamental engineering principles or rules 

on which decisions and reasoning can be based, case-based systems use actual design 

cases as the knowledge base. The case-based reasoning methodology is founded on the 

principle of design by analogy - designers develop new design solutions based on their 

past experiences in that domain [KUMA95]. 

The case-based framework is shown in Figure 2-2. When presented with a new design 

problem, the system retrieves similar past designs from the case base by matching design 

attributes present in both the current design specifications and the past design cases. It then 

attempts to adapt and modify the current problem data using the past solution strategies to 

arrive at a complete design artifact. The new solution is then added to the case base for use 

in later design problems. 

This methodology exhibits a distinct shift towards object-based systems. The 

adaptation and modification of the design model is based on comparisons between the 

current design specifications and the past design cases. The solution is achieved by an 

interaction between the model and the knowledge about the model, not just the knowledge 

itself. There is also a clear separation between the design artifact and the knowledge 

resource. 

Researchers developed a number of design systems that utilized the case-based 

reasoning methodology. The DEJAVU system performed functional mechanical gear 
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Figure 2-2. Case-Based Design Framework 

design by retrieving past gear design cases and adapting them to solve the current design 

problem based on functional design specifications [BARD93]. CLAVIER provided 

manufacturability assessments of aircraft engine parts [HINK95], and the PANDA system 

addressed the need to simplify the pumper engine design process for novice designers 

[RODE93]. These systems applied case-based reasoning to perform an automated design 

process based on start-up data supplied by the designer. [SYCA92] describes the CADET 

system for design synthesis of fluid-mechanical devices. The past design cases are 

represented as models that describe the physical form and qualitative function of various 

devices. When the functional requirements for a new design are provided by the designer, 

the system retrieves relevant past design cases that can contribute to the new design 

solution. The form and function of the new design is synthesized based on qualitative 

reasoning guided by design rules embedded in the case adapter. Several other case-based 

systems for design can be found in [MAHE95]. 
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Case-base researchers forwarded the concept of "knowledge chunking" as the means 

for developing an efficient method for searching the large case bases of the prototype 

design systems. Dealing with a case as a whole was neither effective nor efficient. Instead, 

a case was decomposed into smaller components, or chunks, of knowledge. [DOME93] 

contends that by decomposing a past design cases into smaller, more manageable 

components of the design artifact, the reasoning process becomes more efficient and 

effective by only searching for the relevant parts of past design cases, not the case as a 

whole. This provided a more effective means of organizing the past design cases and 

forced the system designers to adequately decompose the design artifact into the 

applicable and pertinent components of the domain. Retrieval of past design cases, 

however, mandated new design problems match the decomposed structure of past cases. 

This required prior knowledge of past design cases and limited the case-based approach to 

addressing design problems for rigidly defined domains. 

2.1.4 Blackboard Architecture 

The blackboard architecture is another problem solving methodology developed by AI 

researchers that has been applied to CAD systems. The blackboard problem solving 

methodology is based on the concept of an opportunistic problem solving environment, 

which is analogous to a group of experts gathered in a room attempting to solve a problem. 

The experts are unable to discuss the problem with one another and are only permitted to 

communicate using a blackboard at the front of the room. A moderator mediates the 

actions of the experts and controls which expert goes to the board to contribute to the 

developing design solution. Each expert contributes to the solution by reacting 

opportunistically to changes in the solution and notifying the moderator of their desired 

action. As the solution develops on the board, more experts are able to contribute until the 

problem is solved. 
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Figure 2-3. The blackboard system framework 

The actual blackboard system structure, shown in Figure 2-3, consists of three primary 

components: the blackboard, the controller, and the knowledge sources. The blackboard is 

the global solution space that contains the developing solution. During the development of 

the solution, all interaction is accomplished via the blackboard and the knowledge sources 

do not directly interact. Those knowledge sources that can apply themselves to the design 

solution notify the controller which moderates the order in which the knowledge sources 

apply themselves to the solution. As the solution proceeds, the knowledge sources react 

opportunistically to it, manipulating the objects represented on the blackboard, until 

arriving at an acceptable solution. 

This framework differs significantly from the previously discussed systems because 

more than one knowledge resource contributes to the solution. The knowledge sources are 
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maintained separately from one another and encapsulate a single aspect of the domain 

knowledge. This organization eliminates the problem of the large, deeply nested 

knowledge bases found in the KBES or a single, complex model used in model-based 

reasoning systems. It also allows for new knowledge sources to be brought into the system 

without reorganizing the entire knowledge base. Separate knowledge sources allow 

various types of knowledge to be used in support of the solution process and provide a 

more realistic knowledge representation than the previous methodologies. Unlike KBES 

and model-based systems, the order in which the blackboard knowledge sources apply 

themselves to the solution is independent of their grouping within the system. 

The blackboard framework also incorporates the concept of an object-based system. 

The blackboard framework clearly separates the model from the knowledge and utilizes 

both the knowledge about the domain and the actual model of the design artifact to 

complete the design. The blackboard can be divided into separate sections that represent a 

different aspect of the solution domain. This decomposes the model along similar lines as 

case-based systems. The system also provides an interactive link between the model and 

the various knowledge sources. 

Blackboard systems were originally developed for use in speech recognition, system 

diagnosis, and instructional planning environments. [ENGE88] and [JAGA89] provide a 

review of these early blackboard systems. After experiencing early success, researchers 

turned to blackboard frameworks for developing knowledge-based CAD systems 

[BUSH87], [CORB86], [DIX084], [SRIR86], [VENK86]. Most of the systems utilized 

the blackboard framework's multiple knowledge sources and opportunistic problem 

solving methodology to facilitate automated design. [MAYE88] reports a blackboard 

system for mechanical design that integrates the designer in the design process. Multiple 

knowledge sources cooperate to select appropriate design components based on the input 

specifications supplied by the designer and acquired from the designer during an interview 
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process similar to those used in KBES. The designer actively participates in the design 

process by acting as a knowledge source and defining new design rules as the design 

solution develops. 

2.1.5 Hybrid Systems 

Hybrid systems developed from the realization that limiting the knowledge resources 

to one type of knowledge representation did not adequately support the design process. A 

hybrid system combines two or more of the previously discussed AI methodologies in a 

single environment. [CHAM95] discusses the importance of creating hybrid systems to 

integrate multiple knowledge representations in the same design environment and to create 

a more robust design system. Each AI knowledge representation has its strengths and 

weaknesses, yet no single type completely solves the design problem. 

In addition to combining AI tools, the hybrid systems also combined AI methodologies 

with conventional CAD tools, such as analysis and drafting packages. [RODR94] presents 

a hybrid design system developed for shape definition of structural components using a 

combination of an expert system and an analysis program. The integration of the various 

systems into one environment does not mean, however, they will work cooperatively 

towards a viable solution. These design environments have developed into integrated 

systems that utilize the various AI techniques for solving automated design problems in a 

procedural manner, stepping through a series of pre-defined design stages. These 

environments do not provide the necessary framework for supporting design assistance. 

2.1.6 Commercial Packages 

Several commercial systems have been developed to support the creation of AI based 

CAD applications, including ICAD,™ IntelliCorp's KEE™ and Wisdom Systems' 

Concept  Modeller.™  The   commercial   systems   provide   sophisticated,   interactive 

development environments for creating AI-based applications. However, they are only 
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support packages for knowledge-based system development, not solutions to any of the 

problems inherent in the methodologies. 

2.2 Interactive Design Assistance 

The AI methodologies cited above contributed significantly to the integration of 

engineering knowledge in CAD systems. As noted, nearly all of the systems targeted 

automated design or diagnostic applications. During the same time period, researchers 

also investigated the development of design systems that applied the same basic AI 

methodologies to integrate engineering design knowledge into interactive design systems. 

The difference between the automated and interactive design assistance philosophies has 

been the source of considerable debate. [MACC90] and [GALL95] argue that a 

fundamental problem with automated design systems is that they attempt to define rigidly 

a design process that is inherently dynamic and non-procedural. Although automated 

systems perform well in domains with rigid procedures and parameterized product 

models, any variances from the established regime are not allowed. Development of the 

CADRE system identified the weakness of attempting to define a "complete and correct 

knowledge base" for a design process that is intrinsically evolutionary [HUA96]. The 

designer and the computer must participate cooperatively during the design process, with 

the designer maintaining control of the process, identifying and presenting the problem 

while assuming full responsibility for the results. 

Current design assistance methodologies can be categorized into three groups based 

on their designer interaction paradigms, as shown in Figure 2-4. The first interaction 

paradigm is that of the automated design systems. The design process and the knowledge 

are represented within the design system and operate to achieve a final design based on 

initial input from the designer. All of the automated systems presented in the previous 

sections operate with this style of interaction. In the second interaction paradigm, model 
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Figure 2-4. Designer Interaction Paradigms 

diagnosis, the model is automatically diagnosed using internally represented analysis 

processes and design knowledge after the designer creates the model. The Component 

Design Advisor presented in [DIAZ94] employed the diagnosis style of interaction, 

analyzing a completed model and then advising the designer of any design critiques. The 

ProMod-S system described in [YEH96] operated on a similar premise for sheet metal 

manufacturing. The system analyzed, using a KBES, a completed geometric model 

provided by the designer to identify any difficulties that may be encountered during the 

manufacture of the part. 
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The PERSPECT system presented in [DUFF96b] approaches the problem of design 

support using the third interaction paradigm, on-line design information. The designer can 

query on-line design knowledge as shown in Figure 2-4(c) to explore similar past design 

cases within a particular domain. [OXMA93] reported a similar design assistant system 

that organized past designs into huge "design libraries" that respond to queries from the 

designer using case-based reasoning techniques. The resulting system supports the 

designer by allowing him or her to browse past designs and learn from those experiences. 

[CANT95] presents a design system that implements the same designer interaction 

philosophy, providing past design browsing support through a blackboard framework. 

These systems implemented a variety of pro-active, or passive, design assistance that 

provided design advice after the designer completed the design process, before the process 

began, or in response to the designer's queries. The design assistance was not provided 

interactively to the designer as the solution developed. Many of the design environments 

required the designer to support the system's design process and respond to queries by the 

system for pertinent information. For example, the VEXED system presented in [STEI92] 

for VLSI design required the user to direct which design component to refine using a 

KBES. The VT system presented in [MARC88] implemented this type of user interaction 

and required the designer to provide key parameter values during the design process as a 

KBES shell refined the design solution. 

2.3 Engineering Design Knowledge 

It is widely accepted that the range of knowledge spanned during the design process is 

far broader than simple rules. [DIX095] and [BRIN95] identify some of the varied 

knowledge types as: 

• knowledge of the design artifact, 

• design component relationships, 
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• facts and data, 

• design processes, and 

• analysis methods. 

The development of a knowledge assisted design system must provide the means of 

representing this varied knowledge in a manner conducive to design support. However, as 

[BIJL87] explains, those representations innate to human designers cannot be directly 

translated to computer representations. While case-based reasoning may accurately reflect 

the manner by which humans reason about past design situations, experience shows the 

use of a single knowledge representation type in a design environment leads to the brittle 

system functionality experienced by the KB ES. 

To avoid the pitfalls of a single knowledge representation environment, [MAS095] 

presents an automated design system that utilized a blackboard framework with multiple, 

cooperative knowledge sources that represented varied engineering systems from process 

planning to cost analysis. [BAYL95] discusses a framework based on the research 

conducted for the ESPRIT project that effectively integrated multiple knowledge sources 

in an expert system developed to model the concurrent engineering philosophy. 

[DOWL94] supports the use of multiple, cooperative knowledge sources for representing 

varied engineering knowledge types, as can be found in concurrent engineering systems. 

The Concept Designer presented in [HAN95] implemented an object-oriented blackboard 

architecture that utilized multiple knowledge sources in support of chemical process 

synthesis. The knowledge sources were maintained separately to encapsulate their 

knowledge and functionality. By encapsulating the engineering design knowledge into 

separate, distinct sources, multiple types of knowledge can be represented in an integrated 

system. This also allows for the creation of knowledge sources responsible for single 

product components or processes [THOM95]. A similar approach can be found in 

[SOB091]. 
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The engineering knowledge sources utilized in an interactive design support system 

must also be able to communicate in a language compatible with the domain they 

represent. The concept of an ontology, outlined in [GRUB93], serves as a representational 

vocabulary for defining a domain. An ontology provides the means by which engineering 

knowledge can be exchanged between the system and the designer [DEL095]. Because of 

the complex nature of knowledge representations, the AI-based design systems required 

specialized knowledge engineers to code the knowledge for the system. [MAYE88] 

addressed this issue, noting that having an intermediary input the knowledge into the 

system led to distortions of the knowledge because of inconsistencies acquired from the 

knowledge engineer's misinterpretations of the expert's interview. Additionally, the 

systems needed to be debugged by the experts, but only the knowledge engineers could 

change the system. 

2.4 Product Models 

AI-based CAD systems that integrate an engineering product model with a knowledge 

resource in an object-based framework require the development of a model representation 

that must represent the full range of engineering information needed for the design 

process. The model does not have to include all of the possible engineering information 

about the design object, but it should contain the data from which the necessary and 

pertinent engineering information can be derived [KIMU95]. The product model is yet 

another means by which engineering knowledge can be introduced to the design system, 

and it represents what is being designed, and how it is designed, and its representation 

dictates the manner in which reasoning occurs [ROGE95]. [YAGI91] provides a historical 

perspective on model representations for CAD systems. 
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2.4.1 Model Decomposition 

The vast amount of engineering information contained within any design model makes 

it necessary to decompose a complex design problem into smaller, more manageable 

segments. [KUSI95] provides a review of decomposing design artifacts and states that, for 

product decomposition, an artifact can be decomposed by structure and function. A 

structural decomposition separates the product into its various physical components and 

results in a hierarchical model of the geometric configuration of the design artifact. A 

functional decomposition separates the artifact based on the interactions of the various 

design components to perform the actions necessary to achieve the desired goals for that 

product [CHIT94]. An engineering object cannot be completely defined by either function 

or structure alone. The model must represent both the form and the function of the product 

to be of any practical use in a design environment that integrates engineering knowledge 

into the design process [GER094]. 

[SCHE93] identifies the integration of conventional geometric models and the 

knowledge-based functional models as a fundamental problem in achieving so-called 

intelligent CAD systems. Their prototype system, however, only hints at the possibility of 

integrating the two models. Less than half of the representative systems presented thus far 

consider the geometry of the product. Those that consider part geometry provide 

assistance by diagnosing or analyzing a completed geometric model and do not provide 

assistance during the geometric construction process. 

2.4.2 Features 

The use of features for design integrates both the form and function of a design 

component in a single entity. Although the definition of a feature varies between 

applications, it is widely accepted that a feature is an encapsulation of engineering 

information. [BROW95] presents a feature-based model for a model-based geometric 
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reasoning system and defines a feature as "any perceived geometric or functional element 

or property of an object useful in understanding the function, behavior, or performance of 

the object." For example, after a functional decomposition has been performed on a design 

artifact, features can be used to represent the resulting entities of the model, which can be 

placed in a hierarchical model of the product. The power of the feature-based 

representation, though, is that the features represent the geometry of the part as well as 

other engineering information, such as tolerances and material properties. [DIX087] and 

[SHAH95] provide reviews of the use of features in CAD. 

Feature-based design (FBD) utilizes features as the building blocks to construct and 

represent a design artifact. Just as conventional CAD systems provide two-dimensional 

sketching and three dimensional solid modeling packages for geometric model 

construction, FBD systems provide pre-defined features for feature-based model 

construction. Unlike the geometric model, however, the feature-based model represents 

both the geometry and other engineering characteristics of the model. In addition, feature- 

based design implicitly builds design intent, or the rationale for making certain design 

decisions, into the final product model. Individual features represent certain functional 

aspects of the total design, and the choice of a particular feature in lieu of another 

represents the designer's intent [ROY95]. 

As the AI-based CAD systems have moved from the knowledge-based framework of 

the KBES to the object-based framework of the blackboard architectures, features have 

become a common basis for the integration of the engineering knowledge and models. 

[BATA93] discusses the benefits of the use of features for data and knowledge integration. 

The feature serves as yet another discrete form of knowledge about the complete product 

model to be used during the reasoning process, and, because feature-based models are 

hierarchical in nature, reasoning about the product can be performed on varied levels of 

detail. The use of features in the AI-based CAD systems, though, has been limited to 
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model diagnosis and critiquing environments that utilize a completed feature-based 

product model for a particular knowledge-based analysis [CHEN95], [BATA93], 

[BROW95], [BAYL95], [ROY95], [YEH96]. 

2.5 A Foundation for Knowledge Assisted Design 

This chapter has presented the past efforts towards integrating experiential engineering 

knowledge in CAD systems. Many of the systems were developed primarily for automated 

design synthesis and model critiques and have shown limited success in those areas. While 

their model and knowledge representations do not support an open-ended, interactive 

design process, these past efforts do provide the fundamental building blocks upon which 

a knowledge-assisted deign methodology can be based. 

The foundation for any CAD system is a representation of the design model that 

allows the design system to effectively perform its expected task. Conventional CAD 

systems are based on geometric models which can be constructed and analyzed using 

readily available design systems. As presented in Chapter One, the goal of this research is 

to develop a CAD methodology for an interactive design environment that integrates 

experiential engineering knowledge and conventional CAD tools and to provide 

interactive support during the design process. For this reason, the methodology must 

provide a proper representation of the design artifact, the design knowledge and the design 

process. These models must be integrated into a design system that provides interactive, 

opportunistic design support during the design process. 

The next chapter presents the product, knowledge, and process models formulated for 

the knowledge assisted design methodology. These models build on a number of the 

approaches presented in this chapter and extend the representations to adequately support 

a dynamic, interactive design process. Chapter Four then presents the integration of the 

models into a framework for knowledge assisted design. 
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CHAPTER 3 

REPRESENTING ENGINEERING KNOWLEDGE FOR DESIGN 

As discussed in the previous chapter, the foundation for the knowledge assisted design 

methodology is appropriately representing the engineering knowledge for design. This 

includes representing the design artifact itself, the standards and guidelines that control 

and determine the attributes of the design artifact, and the design procedure for arriving at 

a final product model. The engineering knowledge representations build on the object- 

based system framework discussed in the previous chapter and extend the concept one 

step farther. The model is at the core of the methodology, and the design knowledge 

provides assistance to the designer during the design process. This chapter addresses both 

the model and the knowledge representations established for the knowledge assisted 

design methodology. 

3.1 The Product Model 

The product model structure is based on four fundamental requirements motivated by 

the shortcomings of the methodologies presented in Chapter One. First, the model 

structure must allow the designer to express both the functional and structural engineering 

content of the product, as well as design intent during the design process. Second, the 

model must represent the engineering content in a vocabulary familiar to the designer. 

Third, the knowledge must be able to interact with the model on various levels of detail. 

Finally, the model structure must be easily extensible, allowing the design engineer to 
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extend the model's structure  without detailed knowledge of the  design  system's 

functionality. 

An object-oriented, feature-based model structure was formulated based on these 

requirements and preliminary investigations. The feature-based model was selected 

because features encapsulate both the form and function of the design artifact in single, 

distinct entities. A designer can perform both functional and geometric design 

simultaneously if features are used in conjunction with the feature-based design 

environment to be discussed in the next chapter. The dual functional and structural 

representation in features allows the designer to create a product model much richer in 

engineering content than the previous AI-based CAD systems that considered only 

functional properties of the design artifact and avoided geometry altogether. The feature- 

based model also decomposes a design artifact into smaller segments, thereby reducing a 

complex design problem to a number of smaller, more manageable problems. This was a 

key decision that laid the foundation for the development of the knowledge representation 

and design system functionality. The design example shown in Figure 3-1 presents a 

simplified model of the engine flywheel developed for the prototype design environment 

discussed in Chapter Five. The example will be used to provide an overview of the model 

hierarchy and introduce some of the key terms. 

3.1.1 The Feature-Based Model Hierarchy 

The model is organized in a hierarchical data structure shown in Figures 3-1(c) and (d) 

and consists of three layers. Each successive layer contains more detailed engineering 

information about the product. The outermost layer of encapsulation is the model, which 

presents the design as a single entity. Each instance of a model represents a unique design 

scenario and can be identified by its type and a unique identifier, which, for this example, 

are "flywheel" and 1, respectively. The model encapsulates the details of the product 
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design as they are defined during the design process by serving as a container for, and 

providing external access to, the next layer of the hierarchy, features. 

Features represent the functional components of the design artifact and are identified 

by the actual names of the entities used by designers to characterize their functionality. 

Features encapsulate the detailed geometric and non-geometric engineering model content 

in parameters and geometric elements which constitute the final layer of the hierarchy. 

Nine features comprise the flywheel model: axis, web relief, ring gear trunnion, top relief, 

clutch mounting face, pilot bore, friction face, and mounting bore. 

Parameters are key-value pairs that represent the detailed geometric and non- 

geometric engineering attributes of a feature, such as dimensions and surface tolerances. 

The parameter key identifies the name of the attribute as defined in the designer's domain 

ontology. The ring gear trunnion feature, shown in expanded form in Figure 3-1(d), has 

five parameters identified by the keys height, depth, inner diameter, surface finish, and 

Brinell hardness. There are two types of parameter values: continuous and discrete. 

Continuous parameter values are defined in the feature as either a number or a string that 

the designer assigns a specific value during the design process. Discrete parameter values 

are defined in the feature as a set of values from which the designer can choose to assign 

the value of the parameter. The Brinell hardness parameter defines three discrete values 

from which the designer may choose during the design process. The other ring gear 

trunnion parameter values are continuous and may be assigned any value. 

Geometric elements are the primitive entities that combine to define the form of a 

feature and are used to position the feature within the model. They are identified according 

to the designer's domain ontology, and each geometric element contains a list of 

parameters that define the entity's dimensions. For a two-dimensional geometric model, 

such as the flywheel cross-section, the geometric elements include lines and arcs. The ring 

gear trunnion geometry is defined by two geometric elements: a horizontal line and a 
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vertical line. Each line contains one parameter that defines the dimension "length" with a 

continuous value. Geometric elements are positioned with respect to one another based on 

the order in which they are added to the feature. Feature positioning will be discussed later 

in the chapter. 

The product model structure satisfies the four requirements presented at the beginning 

of the chapter. Features encapsulate both the form and function of a design component, 

and when coupled with a feature-based design environment, allow the designer to express 

geometric and non-geometric engineering information and design intent, which satisfies 

the first requirement. The entities on all layers of the hierarchy are identified by the actual 

names used by designers, thereby satisfying the second requirement. The hierarchical 

structure of the model also allows the knowledge to interact with the model on increasing 

levels of detail, from the model to the parameters, and satisfies the third requirement. 

Finally, the object-oriented framework satisfies the fourth requirement. The designer only 

has to extend from the established framework to add functionality to the model, rather 

than reconfigure the entire model. 

3.1.1.1 Feature Geometry 

A more detailed feature hierarchy has been established to accommodate the various 

geometric configurations of features. Features descend from the parent feature class as 

shown in Figure 3-2. The next level of the hierarchy discerns the features with and without 

a geometric representation as geometric and non-geometric features. While the power of 

features lies in their capability to encapsulate both the form and function of a design 

component, features can represent non-geometric functional components of the model and 

are not required to contain geometric elements. The exploded view of the flywheel cross- 

section shown in Figure 3-1(b) identifies the eight geometric flywheel features by their 
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location within the model. The ninth feature, the clutch, is a non-geometric flywheel 

feature. It contributes functionally to the design but has no geometric representation. 

The hierarchy extends one level deeper to isolate the two geometric feature 

configurations: fixed and variable. Fixed geometric features are pre-defined with a set of 

geometric elements to describe the feature geometry. The geometric element parameter 

values can be modified during the design process; however, the type and number of 

geometric elements in the feature are immutable during the design process. The flywheel 

ring gear trunnion is an example of a fixed geometric feature. Its geometric elements are 

pre-defined, include a horizontal line and a vertical line, and cannot be modified during the 

design process. 

Variable geometric features differ in that the number and types of geometric elements 

to define the feature geometry are mutable during the design process and are not pre- 

defined. The geometric element parameter values can also be modified during the design 

process. The flywheel web relief shown in Figure 3-3 is a variable geometric feature. Prior 

to the design process, the feature is defined with a name, web relief, a single parameter, 

surface finish, and no geometric elements as shown in Figure 3-3 (a). During the design 
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process, the designer decides to define the web relief geometry as shown in Figure 3- 

3(b).Three vertical lines and two arcs are added to the web relief to achieve the desired 

geometry. The resulting feature is shown in Figure 3-3(c). 
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3.1.1.2 Feature Positioning 

The feature positioning methods are based on the concept of "handles" presented in 

[ANDE86] and [BURC87]. Handles are attachment points defined within a feature's 

geometric elements that provide an object-oriented method for positioning geometric 

elements and features relative to one another. They are used to position geometric 

elements to define feature geometry and to position features to define the model geometry. 

Handles are identified by unique integers. 

The handle positions for each two-dimensional geometric element are defined relative 

to one another in a planar cartesian coordinate system local to the geometric element. 

Consider the example of the horizontal line shown in Figure 3-4. The position of handle 1 

in its local coordinate system is (0,0). The position of handle 2 is (/,0), where / represents 

the line's length parameter value. Similar positions are established for the vertical line and 

arc. 
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Each geometric element is assigned a positioning relation that defines its location 

relative to another geometric element in the feature. The geometric elements developed for 
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the flywheel example and prototype design system are two-dimensional primitives that, by 

not allowing rotation, have two translational degrees of freedom; therefore, they must be 

positioned horizontally and vertically to establish their global position. Three positioning 

relations have been established to relate one geometric element with respect to another via 

their handles: Attach, HPos and VPos. 

Consider once again the flywheel ring gear trunnion feature presented in Figure 3-1(d). 

The feature geometry is defined by two geometric elements: a horizontal line and a 

vertical line, shown in greater detail in Figure 3-5(a). Positioning the geometric elements 

within the feature demonstrates the first position relation, Attach. The Attach relation joins 

two geometric elements, thereby removing both degrees of freedom of the geometric 

element for which it is assigned. This also combines the two geometric elements into a 
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single geometric entity. The format of the Attach relation is shown in Figure 3-6, and it 

includes a reference geometric element and feature because it can also be used to position 

features within the model. Geometric elements consecutively placed in a feature are 

positioned relative to one another using the Attach positioning relation, as shown in Figure 

3-5(c). Once all the geometric elements have been added to the feature, it becomes a self- 

contained, fully constrained geometric entity. This is true for both fixed and variable 

geometric features. 

While positioning geometric elements to define feature geometry only requires a 

single positioning relation, positioning features to define model geometry requires an 

extension of the feature hierarchy as shown in Figure 3-7. The extension isolates two 

feature types used in the feature positioning configurations: independent and dependent 
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dimensions. Independent dimension geometric features, or independent features, are 

features whose dimensions are not dependent on the positions or dimensions of other 

features. Independent features can have either fixed or variable geometry. Independent 

features are positioned using the Attach relation and HPos and VPos relations. The HPos 

and VPos relations assign the location of features relative to one another and remove either 

the horizontal or vertical translation^ degree of freedom, respectively, from the feature 

Additionally, the Hpos and VPos statements allow a feature to be offset from another by 

the value of the offset parameter. The format of both relations is shown in Figure 3-8. 

Position Direction Reference Feature Offset Parameter 

T 
xPos X ID , Feature, ID , Parameter) 

Alignment Handle ID Reference Handle ID 

Figure 3-8. Horizontal and Vertical Positioning Relations Format 

The example shown in Figure 3-9 illustrates the positioning of three independent 

features, the mounting bore, the clutch friction face, and the axis. The mounting bore is 

horizontally positioned by its MBO handle, the alignment handle, with respect to the axis' 

AO handle, the reference handle, using the HPos relation. The position is not offset, so the 

offset parameter is Null. The vertical position of the mounting bore is established using the 

VPos relation and is offset from the axis by the bore's radius parameter. The clutch friction 

face is positioned with respect to the mounting bore with the Attach relation which 

positions the clutch friction face's FO handle is both horizontally and vertically with 

respect to the mounting bore's MB1 handle with no offset. 

The effects of position and dimension changes on independent features are illustrated 

in Figure 3-9(c). Changes in their dimensions and positions only affect the position of the 
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feature that is related to them with a positioning relation. For example, the clutch friction 

face is attached to the mounting bore. If the position or dimension of the mounting bore 

changes, only the position of the friction face changes. The mounting bore is positioned 

with respect to the axis, so any changes in the position and dimension of the friction face 

do not affect the mounting bore's position. 
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Figure 3-9. Positioning Geometric Entities for Independent Dimension Features 
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Dependent dimension geometric features, or dependent features, are features whose 

position and dimensions are dependent on both the positions and dimensions of 

independent features. Dependent features can also have either fixed or variable geometry. 

Positioning relations assign the location of geometric elements within the features, and 

dependency relations establish the feature's positioning and dimensioning relationships 

relative to other features. Each dependent feature has two dependency relations of the 

form shown in Figure 3-10. The dependency relations identify the independent features on 

which the feature is dependent and the handles from both the independent feature and the 

dependent feature to use for positioning. Two of the dependent feature's geometric 

elements must be labeled as having variable dimensions to accommodate the geometric 

changes that occur when changes in the position and the dimensions of either independent 

feature occur. One of the geometric element dimensions must be variable in the horizontal 

direction and the other must be variable in the vertical direction. 

Reference Feature 

Dep (ID , Independent Feature] ,|ID|) 

Dependent Feature Handle ID Reference Feature Handle ID 

Figure 3-10. Dependency Declaration Format 

The flywheel web relief feature is a dependent feature, and its position and dimensions 

are dependent on the ring gear trunnion and the mounting bore, as shown in Figure 3- 

11(a). The web relief's WO handle is dependent on the ring gear trunnion's TO handle, and 

its Wl handle is dependent on the mounting bore's MBO handle, as defined by the 

dependency relations shown in Figure 3-11(b). Additionally, the horizontal and vertical 

variants have been identified and are shown in Figure 3-11(a). When the bore's length is 

increased and the ring gear trunnion is repositioned, the web relief maintains the 
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dependencies, as shown in Figure 3-11(c). The horizontal variant' s length increases by 

öx+öw and the vertical variant's length increases by 6y. 

The design system and the designer can query a feature to determine the global 

position of any of its handles. The feature executes a method defined in its structure that 

recursively computes the global position of reference feature handles until the position is 

determined. The procedure for determining the global vertical position of a feature handle 

is shown in Figure 3-12. The horizontal position is determined in the same manner. 

procedure determineVerticalPosition (handle) 
verticalPosition = 0.0 
verticalPosition = determineVerticalPosition (reference handlelD) 
verticalPosition += vertical offset parameter value 
verticalPosition -= relative vertical position of attachment handle 
verticalPosition += relative vertical position of handlelD 

return verticalPosition 
end procedure 

Figure 3-12. Pseudo-Code for Determining Global Handle Position 

3.1.2 Featurizing 

The process of decomposing a design product into features has been called featurizing 

[SHAH95]. Featurizing is very similar to performing a functional decomposition on a 

product; however, the functional components of the design are identified by geometry as 

well. The featurizing process for this methodology builds on that presented in [SHAH95] 

and provides an extension for identifying functional features that do not have a geometric 

representation. The following guidelines have been formulated to aid in featurizing a 

design product. 

1. Examine drawings or CAD models of the product to be featurized, ensuring that 
exemplary versions and generations are considered. 

2. Locate those areas of functional interest to the designer. 
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3. For each functional region, identify any areas that can be further decomposed by a 
particular sub-functional interest to the designer. 

4. Isolate the geometry of each functional region, as well as the engineering 
parameters for the region. These are geometric features. 

5. Determine the primitive geometric entities needed to build the functional features. 
These are the geometric elements. 

6. Identify each geometric feature as positionally independent or dependent. 

7. Identify any non-geometric functional components of the design and the 
engineering parameters for those components. These are the non-geometric 
features. 

The featurizing process is likely to be an iterative process. The key to developing a 

feature base for a design product useful in this methodology is to ensure that the product is 

decomposed to the lowest level of functionality possible. The intent is to construct with 

and reason about features on the smallest grain of detail, thereby simplifying the entire 

design artifact into a number of minute encapsulations of engineering information, and to 

attempt to formulate a fundamental set of features that can be used to build all possible 

models in a domain. 

3.2 The Knowledge 

The knowledge representation is based on three main requirements motivated by the 

experience gained from the methodologies presented in Chapter Two. First, the 

representation must support the variety of knowledge used in the design process. The 

domain knowledge used for design covers a very broad spectrum, from simple rules to 

complex analysis procedures, and more than one of the types must usually be employed to 

arrive at an acceptable product design. Second, the representation must encapsulate the 

domain knowledge in a very narrow spectrum of applicability. Many of the past 

knowledge-based systems attempted to represent all of the domain knowledge in a single 

knowledge base which led to brittle systems that could not be extended easily. Finally, the 
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representation must be easily extensible. Domain knowledge should be able to be added to 

the knowledge base without detailed knowledge of the design system's functionality. 

Based on these requirements and the knowledge representation used in the blackboard 

systems, an object-oriented knowledge representation has been developed for this 

methodology. The domain knowledge is encapsulated in multiple, autonomous knowledge 

sources that provide interactive support during the design process. The following sections 

detail the knowledge source structure and functionality, and describe the process for 

developing a set of domain knowledge sources. This knowledge representation has been 

used to incorporate SAE and ISO design standards in a prototype design system discussed 

in Chapter Five. 

3.2.1 Knowledge Sources 

The definition of a knowledge source is similar to that of a feature; a knowledge source 

is an encapsulation of engineering information. However, as features are encapsulations of 

the function and structure of the design product, knowledge sources are encapsulations of 

the design rules, and heuristic, analysis and support procedures of a product. Consider 

once again the flywheel's ring gear trunnion, and assume that the flywheel designer has, 

based on past experience, determined that the trunnion depth should be two times its 

width. The knowledge source for this rule would be of the form shown in Figure 3-13. 

The knowledge source consists of three sections: the trigger conditions, the can- 

perform-action test, and the perform-action function. The trigger conditions identify the 

feature, or features, that the knowledge source will need to perform, and may modify 

during, its action process. The can-perform-action test is a preliminary test to determine if 

the knowledge source can apply its knowledge to the current model. The perform-action 

function is the actual application of the knowledge to a developing design solution. For 

this example, the ring gear trunnion is the only feature involved in the knowledge source's 
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Height-to-Depth KS 

Trigger Condition 

( Ring Gear Trunnion 

canPerformActionO 

if depth not 2*height 
return true 

return false 

PerformActionO 

J 

set depth = 2*height 

Figure 3-13. An Example Knowledge Source 

action procedure. If the knowledge source is activated, it will first verify, using the can- 

perform-action test, that the depth parameter value is not twice the height parameter value. 

The perform-action function, which changes the depth parameter value accordingly, is 

called if the depth is not twice the height. 

The form of all knowledge sources, regardless of their functional complexity, is the 

same as the previous example. Knowledge sources only have to define trigger conditions, 

the can-perform-action test, and the perform-action function to be utilized during the 

design process. The representation does not limit the type of engineering knowledge that 

can be used in the system. It allows for numerous types of knowledge from various design 

to be represented in the system, thereby satisfying the first and third requirements of the 

knowledge sources. The object-oriented structure also satisfies the second requirement, 

allowing knowledge on a small scale of granularity to be encapsulated within the 

knowledge source. 
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3.2.2 Developing Domain Knowledge Sources 

The technique for developing the set of knowledge sources to represent the 

engineering knowledge for a design domain is similar to the featurizing process. Rather 

than decomposing the design product, however, the process of developing the domain 

knowledge sources decomposes the knowledge about designing the product to a set of 

specific design rules, advice, and procedures. Three important guidelines have been 

established for decomposing design knowledge and are summarized in the following list 

and explained below: 

1. Limit the knowledge source applicability to the narrowest possible focus. 

2. Knowledge sources must interact only with the model. 

3. Limit the knowledge to design facts. 

The first guideline addresses the problem of past knowledge-based systems 

representing all of the knowledge in a single knowledge base. The interactions and 

dependencies among the rules transformed the knowledge bases from a collection of rules 

to intricate programs. While later systems alleviated this problem by breaking the 

knowledge base into smaller knowledge sources, even the smaller knowledge sources 

encapsulated a large amount of information. The intent of the knowledge sources for this 

methodology is to represent domain knowledge decomposed to the smallest possible range 

of applicability, thereby simplifying the larger design problem into a series of smaller, 

more manageable solutions. The model structure is already decomposed to a very fine 

level of detail, and it facilitates focusing the knowledge on small pieces of information. 

The domain knowledge can be isolated to interact with a single parameter of a feature, the 

most detailed level of the model hierarchy. 

This approach has three distinct benefits. First, narrowly focused knowledge sources 

are easier to develop and implement. A designer should be able develop and implement 

knowledge sources on site, which eliminates the need for a specialized knowledge 
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engineer to maintain the knowledge sources. Second, the knowledge base is comprised of 

a manageable set of discrete, autonomous knowledge sources, which eliminates the 

problem of complex, nested knowledge bases. Finally, it is easier to isolate faulty 

knowledge sources during the development process. Each knowledge source performs a 

single action. The designer can isolate the corresponding knowledge source and make the 

necessary adjustments if that process is not performing properly. 

The second point is more an essential requirement than a guideline. Knowledge 

sources must interact only with the model. No interaction is permitted between knowledge 

sources. This alleviates the problems associated with complex, nested knowledge bases. If 

nesting is not allowed, the problems will not occur. 

The third guideline establishes an important basis for this research. The knowledge 

sources provide design assistance to the designer during the model construction process. 

They are not intended to control the design process, mimic the designer's capabilities, or 

completely automate the design process. Most of the limitations of the past AI-based CAD 

systems resulted from their attempt to automate complex design processes. For this 

reason, knowledge sources should be limited to representing design facts that do not 

require complex, cognitive reasoning processes that may not arrive at a solution or cannot 

be represented in the computer. The knowledge sources should facilitate the design 

process, not model it. 

Table 3-1. Knowledge Source Types 

Fact Type Action Description 

Modification Modify feature parameter values 
Establish positioning relationships 
Feature addition and removal 

Advisory Suggest possible design alternatives if precise 
modification is not possible 

Analysis Perform engineering analysis 
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During the course of this research, three types of knowledge sources have been 

established: modification, advisory and analysis. These types, shown in Table 3-1 with 

their respective action descriptions, provide a basis for establishing a set of domain 

knowledge sources. 

3.2.3 Designer Interaction 

The principle purpose of the knowledge sources is to provide interactive assistance to 

the designer. Their advice, therefore, must be presented to the designer to consider the 

consequences of the recommended assistance. The presentation process can be 

implemented in two ways, interactive and automated. A knowledge source that 

implements the interactive approach presents its suggested assistance action to the 

designer, and the designer controls whether or not the knowledge source performs the 

action. A knowledge source that implements the automated approach performs its action 

automatically, presenting the assistance to the designer by actually modifying the model. 

The designer can then, if necessary, modify the changes made by the knowledge source. 

3.2.3.1 Interactive 

Knowledge sources that implement the interactive interaction approach are 

categorized into two classes based on the type of action they perform on the model: model 

modification and advisory. The first category includes knowledge sources that perform any 

type of model modification. The second category of knowledge sources only provide 

advice to the designer and do not perform any action on the model. An interaction message 

that explains the design advice to the designer must be defined for both types of interactive 

knowledge sources. 

Consider the Height-to-Depth knowledge source presented in the previous section. 

Figure 3-14 shows two variations of the same knowledge source, illustrating the use of 

both interaction paradigms to provide an interactive assistance to the designer. The 
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if depth not 2*height 
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) 

Interaction Message 

The trunnion depth should be 
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(a) Model Modification 

Height-to-Depth KS 
Trigger Condition 
(   Ring Gear Trunnion) 
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if depth not 2*height 
return true 

return false 

PerformActionO 

c j> 
Interaction Message 

The trunnion depth should be 
twice the height. 

(b) Advisory 

Figure 3-14. Knowledge Source Dialog Definitions 

knowledge source illustrated in Figure 3-14(a) implements the model modification 

paradigm. If the ring gear trunnion passes the can-perform-action test, the designer is 

prompted as to whether the knowledge source should perform its action and change the 

trunnion depth. The knowledge source shown in Figure 3-14(b), however, implements the 

advisory paradigm. The knowledge source does not perform a specific action; it only 

provides advice to the designer, recommending that the trunnion depth should be 

modified. 

3.2.3.2 Automated 

Knowledge sources the utilize the automated presentation approach do not require any 

additional methods defined within them. For example, the Height-to-Depth knowledge 

source shown in Figure 3-13 presents its action to the designer automatically. If the 
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knowledge source passes the can-perform-action test, the perform action method is 

immediately called to modify the model according to the rule it encapsulates. 
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CHAPTER 4 

KNOWLEDGE ASSISTED DESIGN 

The model and knowledge representations presented in the previous chapter provide 

the fundamental building blocks for developing the knowledge assisted design 

methodology. A complete implementation of the methodology, however, requires a proper 

integration of the knowledge, the model, and the designer. Many of the design assistant 

methodologies presented in Chapter Two integrate representations of the model, the 

knowledge, and the process in autonomous design environments and only allow the 

designer to support the design process controlled by the knowledge. The integration focus 

of this methodology is to bring the designer, the product model, and the domain 

knowledge together in an environment that allows the designer to dictate the process by 

which the product model is designed while receiving dynamic design assistance from the 

knowledge sources. This chapter discusses the resulting design environment and its 

functionality during the design process. The next chapter presents an example of the 

methodology applied to the design of engine flywheels. 

4.1 The Knowledge Assisted Design Environment 

The knowledge assisted design environment is an object-oriented framework based on 

the blackboard architecture. The framework utilizes an opportunistic problem solving 

environment with multiple, autonomous knowledge sources that provide interactive design 

assistance. The framework, shown in Figure 4-1, consists of two primary components: the 
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feature-based design environment and the design assistant. The designer interfaces with 

the system via the feature-based design environment and build the product model from a 

set of pre-defined, domain specific features. The design assistant serves as the 

intermediary between the knowledge sources, stored in a knowledge base, and the 

designer. 

Designer 
Feature-Based 

Design Environment 

File     Features 

  

P  ; 
1 

L .—| _ 
i 

<f ^ 

Design 
Assistant 

Knowledge Base 

Figure 4-1. Framework for the Knowledge Assisted Design Environment 

This framework integrates the designer, the model, and the knowledge to achieve the 

following properties of the knowledge assisted design methodology. 

• The design process is controlled by the designer. 

• The designer receives dynamic, interactive design assistance. 

• The environment is domain independent and easily extensible. 

Each system component encapsulates a distinct functionality contributing to the overall 

capabilities of the design environment. The following sections describe the system 

components, their functionality, and their contributions to these properties. 
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4.1.1 Feature-Based Design Environment 

The feature-based design environment (FBDE) is the designer's primary interface with 

the system. It allows the designer to create, define, and edit a product model using the 

design-by-features paradigm for model construction. The FBDE provides the designer 

with a set of pre-defined, domain specific features that are used to create a product model. 

The features are stored in a feature base that is part of the FBDE. 

The FBDE embodies two of the three methodology properties discussed above. First, 

it provides for a design process controlled by the designer. In fact, the domain knowledge 

is not required to complete the design process. The designer constructs the product model 

by adding features to the model and defining their parameter values and positioning 

relationships to arrive at a completed design. The knowledge is maintained separate form 

the FBDE and only supports model construction. The FBDE allows the designer to add 

features to and remove features from the model and modify the parameter values of 

individual features. In addition, the designer can select specific features and specify the 

positioning relations for those features. If the selected feature's geometry is variable, the 

designer can add geometric elements to the feature to define its geometry. The FBDE also 

supports multiple, concurrent product model construction during a single design session. 

The designer can construct multiple models to experiment with design variations and can 

switch between the product models during the design process. The multiple models can be 

from the same or different domains and are stored in a model within the FBDE. 

The separation of the domain knowledge and the FBDE was serves two purposes. 

First, developing a design environment in which the designer controls the design process 

and the knowledge is not necessary to construct a product model achieves a knowledge- 

assisted design process. Although previous attempts at developing an interactive design 

assistant realized the benefits of maintaining the domain knowledge separate from the 

reasoning engine, the separation was only physical in nature. The function of the design 
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systems was so tightly linked to the domain knowledge that the system would fail if a 

complete representation of the domain knowledge was not defined. These systems were 

truly knowledge-based. In this methodology, only a partial representation of the domain 

knowledge is required because the knowledge is not directly linked to design completion. 

This alleviates the difficulty of representing complex design knowledge to achieve a 

completed design. If a particular aspect of the domain knowledge is very complex and 

difficult, or impossible, to accurately represent in a knowledge source, it can be left out of 

the domain knowledge set without depleting the system's capabilities. The domain 

knowledge sources are intended to facilitate the design process, and any complex 

cognitive reasoning knowledge should be left to the designer. 

The second property the design environment embodies is the domain independence 

and extensibility of the methodology. The FBDE is specific to the domain of the features 

that are loaded into the feature base. The system can be extended for any design domain, 

provided a set of features can be defined for that domain and are loaded into the feature 

base. The complete domain independence of the methodology also requires that the 

domain dependent knowledge sources can be loaded into the system as easily as the 

features. This issue will be discussed in the next section. 

4.1.2 Design Assistant 

The design assistant provides the link between the domain specific knowledge sources, 

the designer, and the product model. It contains a knowledge base that is similar to the 

feature base in the FDBE. The knowledge base stores the knowledge sources for the 

specific domain in which the designer is designing. One design assistant is instantiated for 

each model created in the FBDE; therefore, several can be in operation during each design 

session. 
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The design assistant performs three distinct functions within the knowledge assisted 

design environment. First, the design assistant dynamically respond to modifications in the 

model and presents the changes to the knowledge sources. The design assistant presents 

three types of model modifications to the knowledge sources: 

• feature addition and removal, 

• feature parameter value modification, and 

• feature positioning modification. 

When the design assistant presents the model modifications to the knowledge sources, 

those knowledge sources with a trigger condition that matches the type of the modified 

feature are grouped in a queue of applicable knowledge sources. The design assistant then 

performs its second function, which presents those applicable knowledge sources to the 

designer. The manner in which the knowledge sources are presented to the designer will 

be discussed in the next section. The final function of the design assistant is to maintain a 

clear separation and mediate interaction between the knowledge sources and the model. 

Neither the knowledge and the model, nor the knowledge and the designer, can interact 

without the design assistant. 

The design assistant substantiates the final characteristics of the knowledge assisted 

design methodology. It provides dynamic, interactive design support by way of the 

knowledge sources. The design assistance is presented to the designer opportunistically 

during the design process. The knowledge sources do not present themselves in a pre- 

defined order or at a pre-defined time. They react to the design process controlled by the 

designer, who can interact with the knowledge sources and affect how they are applied to 

the current model. 

The methodology also achieves complete domain independence because of the design 

assistant's framework. Changing the domain in which the design assistant operates is as 

simple as loading a new set of knowledge sources into the knowledge base. The 
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functionality of the design assistant is independent of the type of knowledge sources 

contained within the knowledge base. The design environment is capable of supporting 

any domain that is properly defined according to the proper format, provided that the 

domain of the knowledge sources matches that of the feature base. 

4.2 System Interactions During the Design Process 

Having established the design environment framework and the basic functionality of 

its components, a detailed examination of the design process is necessary to completely 

understand the interactions taking place between the components within the system during 

a design session. The design process is controlled by the designer, and there are no rules 

built into the system that control how the it proceeds. However, because the designer 

process takes place in a FBDE, the design process usually proceeds as follows. First, a 

new model is created. Individual features are then added to the model and their parameter 

values are defined. As more features are placed in the model, the inter-feature positioning 

relations are defined, and knowledge source modification actions further refine the feature 

parameter values. A complete model is achieved once all the necessary features have been 

added to the model, their parameter values have been properly defined, and they have been 

positioned within the model to form a complete geometric model. Both the designer and 

the design assistant contribute to the final design throughout the design process. It must be 

emphasized, however, that the designer has the final say in any changes that occur to the 

model. 

4.2.1 Instantiating a Model 

At the onset of a design session, the FBDE cannot be used to construct a product 

model until the designer instantiates, or creates, a new model. The process of instantiating 

a new model triggers a series of important actions within the design environment that 
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initialize the system for the design process. To create a new model, the designer must 

specify the domain to which the model belongs. The system then dynamically loads the 

domain feature set into the FBDE's feature base. If the features are successfully loaded, 

the system initializes the model hierarchy. The FBDE assigns the model a name, which 

corresponds to the domain to which it belongs, and a unique identifier which differentiates 

it from other models created within the same domain. The model hierarchy initially 

contains a model layer with an empty feature list. The FBDE places the new model in its 

model list. 

Once the base of the model hierarchy is established, the system creates a design 

assistant for the new model and initializes it with a reference to the model and an empty 

knowledge base. The system also initializes the design assistant to observe the product 

model and recognize any modifications that occur in it during the design process. The 

design assistant then dynamically loads the domain specific knowledge sources into the 

knowledge base, just as the features were loaded into the feature base. The system is now 

completely initialized, and the designer can begin the design process. 

The instantiation process differs slightly if a new model is created after the design 

environment has been initialized. If a model of the same domain as the new model already 

exists, the initialization process creates a new model hierarchy and adds that model to the 

FBDE's model list. If the new model's domain is different, the initialization process 

proceeds as follows. First, the FBDE creates a new feature base is created and loads the 

new domain feature set into it. Second, the FBDE creates a new model hierarchy and adds 

it to the model list. The FBDE also instantiates a new design assistant and, the design 

assistant loads the domain specific knowledge sources are adds them to its knowledge 

base. The designer can now use the design system to design multiple models by simply 

switching between them during the design process. 
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4.2.2 Building the Model 

The process of building and defining the product model begins once the designer 

creates the model and the system initializes the design environment. Model construction is 

decomposed into two distinct stages of feature modification: start-up feature modification 

and feature modification. Each process involves adding features to the model and 

modifying their form or function. 

4.2.2.1 Start-Up Feature Modification 

The start-up feature modification process occurs immediately following model 

instantiation and design environment initialization. At that time, the FBDE prompts the 

designer to define the parameter values for a set of start-up features. Start-up features are 

functional features that define the initial input specifications for the product model. This 

set of features is pre-defined and maintained in a file that lists the feature types. For 

example, if the clutch is considered a start-up feature for the flywheel presented in Chapter 

Three, the file will consist of one line that specifies engine type as the feature type. 

This stage of the design process is similar to the designer providing the input 

specifications for the automated design systems. The designer is not required, however, to 

define the start-up feature parameter values for the design process to continue. When 

prompted, the designer can either define the start-up feature parameter values or cancel the 

action. If the designer chooses to cancel the action, the design process proceeds directly to 

feature modification. If the designer defines the start-up feature parameter values, 

however, those features are added to the model. The resulting internal actions will be 

discussed in the next section. This process also differs from providing input specifications 

for the automated design systems because it is not necessary to provide any start-up 

features for a particular domain. If the file is empty, the design process simply continues to 

the next phase. 
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The following guidelines have been established to assist in determining which features 

to include in the set of start-up features for a particular design domain. 

• Include features that define the design limits of the product, both functionally and 
geometrically. 

• Include features on which many or all of the features in the model are dependent. 

• Do not include features that are dependent on several other features in the model. 

• Include only functional features that must be present in every variation of the model. 

Although the inclusion of start-up features is optional, it provides a valuable type of 

assistance to the designer and defines the core foundation and design envelope for 

designing the product model. 

4.2.2.2 Feature Modification 

The feature modification stage constitutes the bulk of the design process and includes 

adding features to the model, removing them from the model and defining their parameter 

values and geometric elements. Unlike the start-up feature modification stage, however, 

the designer is not prompted to define a specific set of features and add them to the model. 

The designer controls the feature addition process and decides when to add a particular 

feature and define its parameter values. The designer can also modify or remove features 

previously added to the model and define the positioning relations for those features that 

have a geometric representation. Each of these actions modifies the model, and the design 

assistant observes them as changes in the model and triggers a series of events within the 

knowledge assisted design environment.The events triggered within the FBDE when a 

model modification occurs update the status of the model. For example, when the designer 

selects a feature to edit, the FBDE presents the feature's parameters to the designer and 

applies any changes the designer makes to the current model. 

The events triggered outside the FBDE when a design modification occurs provide the 

dynamic assistance to the designer during the design process. The ensuing events are 
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independent of the type of modification to the model. When a modification occurs, the 

model notifies the design assistant that a particular feature has been modified. During the 

notification process, the design assistant establishes a reference to both the model and the 

modified feature and presents them to the knowledge sources. The design assistant then 

queries each knowledge source to determine if it may be able to provide design assistance 

based on the type of feature modified. During the query, each knowledge source compares 

the modified feature type to those listed in its trigger conditions. If the types match, the 

knowledge source responds affirmatively to the query. If they do not match, the knowledge 

source responds falsely, and the design assistant queries the next knowledge source in the 

knowledge base. 

The knowledge sources that respond affirmatively to the design assistant's query are 

placed in an action queue. The queue sorts the knowledge sources based on the number of 

trigger conditions in each knowledge source, which isolates those knowledge sources that 

perform an action on the model that involves only on the modified feature from those that 

utilize several features for design assistance. The knowledge sources are sorted to reduce 

the possibility of potential conflicts, an issue to be discussed in Section 4.3. Following the 

queue sorting process, the design assistant attempts to present the knowledge sources one 

at a time to the designer. First, the design assistant queries the knowledge source's can- 

perform-action test. If the knowledge source responds falsely, the query is performed on 

the next knowledge source in the action queue. If the knowledge source response is true, 

then it presents its action to the designer. 

The knowledge sources present their design assistance to the designer using either the 

automated or the interactive approach. Knowledge sources that implement the automated 

interaction approach immediately perform their action. Knowledge sources that 

implement the interactive presentation approach present their assistance to the designer to 

control whether the knowledge source applies itself to the model. If the advice is a 



58 

recommendation and does not modify the model, the knowledge source presents the 

design advice and the design process continues. If the knowledge source can provide 

assistance by modifying the model, the designer must choose whether or not to allow the 

knowledge source to perform the modification. If the designer allows the process to occur, 

the knowledge source immediately performs its modification action. If the designer 

chooses not to allow the action to be performed, however, he or she must provide an 

explanation for contradicting the suggested design modification. The system stores the 

explanation with the model data which can be viewed at a later time to justify any design 

decisions that may violate established design standards. 

Once a knowledge source has performed a modification action on the model, the 

model notifies the design assistant that a change has been made, just as it did when the 

designer modified the model. The knowledge sources are queried again, and the design 

assistant creates and sorts a new list of applicable knowledge sources. This process 

continues each time a knowledge source modifies the model, building a tree of possibly 

applicable knowledge sources that are traversed in a depth first manner, as shown in Figure 

4-2, until all the nodes have been visited. 

0 '> 1 (5    0 

(2   a) (6    3) 1 <7    4) 

(3    7) (• 0 
(4    8) 

Knowledge Source 

(3E> Action 
Triggers 

A = Order Added to Queue 
B = Order of Action Performed 

Figure 4-2. Depth First Knowledge Source Action Traversal 
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During the feature modification design stage, the designer also defines the geometry 

for features with variable geometry. This process includes adding and removing geometric 

elements and defining their dimension parameter values and positioning declarations. 

Adding geometric elements to a feature is equivalent to adding features to the model. The 

feature stores geometric elements in a list as they are added by the designer. By default, 

Attach position relations are assigned to position the geometric elements with respect to 

one another. Consider the example shown in Figure 4-3. Feature B is an independent 

feature with variable geometry. When the designer adds Feature B to the model, the 

system initializes the feature with an empty geometric element list and a single handle, 

BO. To achieve the desired feature geometry, as shown in Figure 4-3(a), the designer first 

adds as arc and a vertical line to the feature. When the arc is added, its AO handle 

J' 
Hl/AO 

(b) Adding Arc 

BO 

(a) Desired Geometry of Feature B 

Feature A 

PPvi 

[j Al/VO 

HO Hl/AO 

(c) Attaching Feature A to Feature B 

Figure 4-3. Defining Variable Geometry 

automatically replaces the BO handle. When the vertical line is added, the system defines 

an Attach relation that positions the vertical line's VO handle with respect to the arc's Al 

handle. Once the designer completely defines the desired geometry for Feature B, he or 
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she assigns an Attach position relation between Feature A's HI handle and Feature B's A0 

handle to achieve the geometry shown in Figure 4-3(c). 

The designer can define the geometry of an independent feature, as illustrated in the 

previous example, once he or she adds the feature to the model. If the position is 

dependent, however, the designer can define the feature's geometry only after the 

dependency relations have been assigned to the feature. Additionally, a horizontal and 

vertical variant geometric element must be specified before the editing process is 

complete. 

Ring Gear Trunnion 

Horizontal 
Variant 

Vertical 
Van an! 

Mounting Bore 

(a) Defining Web Relief Geometry (b) Resulting Constrained Geometry 

Figure 4-4. Web Relief Example for Defining Feature Geometry 

Consider the example shown in Figure 4-3 which illustrates the process of defining the 

geometry for the flywheel web relief presented in Figure 3-11. To achieve the desired 

geometry shown in Figure 4-3(b), the designer or the knowledge sources must first assign 

the dependency relations that relate the mounting bore and the ring gear trunnion to the 

web relief. Once the relations have been assigned, the designer adds three vertical lines 

and two horizontal lines with their default dimensions, which the system adds to the 

feature and positions with Attach relations, resulting in the geometry shown in Figure 4- 
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3(a). The designer assigns the horizontal and vertical variants as shown, and, upon 

completion of the geometry specification process, the system constrains the geometry to 

connect the bore to the trunnion. The model then notifies the design assistant of a model 

modification, and the design assistant queries the knowledge sources as discussed in the 

previous section. 

4.3 Design Process Control 

Although the design process is externally controlled by the designer, the knowledge 

assisted design system implements internal control procedures to avoid conflicts and loops 

associated with knowledge source actions. The first procedure prevents the development 

of loops when the design assistant places the applicable knowledge sources in the action 

queue. As shown in Figure 4-4, if the first knowledge source in the action queue is 

Action Queue 

(KS2) 

(KS3) 

( KS4) 

Figure 4-5. Infinite Action Loop 

triggered by, and modifies, a particular feature, the model will notify the design assistant 

of the change, and the design assistant will place the same knowledge source as the first 

knowledge source in the second level of the action queue tree structure. This process will 

cycle indefinitely without some form of control. To avoid this problem, the system places a 
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lock on each knowledge source as it performs its action, which prevents the design 

assistant from querying it. While the knowledge source's action may trigger additional 

knowledge sources to be placed in the queue, once a lock is placed on it, the design 

assistant cannot add the knowledge source to the action queue again until its action is 

complete and the design assistant removes the lock. 

The second internal control procedure deals with the automatic presentation of 

knowledge source actions. Consider the example of the automated flywheel rim Height-to- 

Depth knowledge source presented in Chapter Three. As an automated knowledge source, 

the designer cannot control its application to changes in the model. If the designer chooses 

to set the depth to a value other than two times the height, the knowledge source will 

automatically change the value back. Without any for of control, the designer will never be 

able to change the depth to any other value. To avoid this problem, the designer is 

prompted to intervene if an automated knowledge source is applied more than once during 

the same design session. The designer can either disable the knowledge source and 

provide an explanation for the deviation or leave the knowledge source enabled and accept 

the enforcement of the rule. A disabled knowledge source cannot contribute to the design 

process until the designer specifically enables it. 

The designer also has two means of manipulating the applicability of interactive 

knowledge sources as they are presented during the design process. First, the designer can 

allow a knowledge source to apply itself to the model and then disable its interactive 

presentation capability. The doing so, the designer accepts the knowledge source's action 

and allows the knowledge source to apply itself automatically for the remainder of the 

design process. Second, the designer can disable a knowledge source by rejecting its 

recommended action. In this case, the designer is prompted to provide an explanation for 

the deviation, and the knowledge source is disabled. Disabled knowledge sources may be 

enabled by the designer at any time during the design process. 
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A final form of knowledge source control allows the designer to disable all of the 

knowledge sources' participation in the design process. The knowledge sources can be 

completely disabled if the designer wishes to build a product model free from any 

interaction with the knowledge sources. While this defeats the purpose of a knowledge 

assisted design environment, it allows the designer to maintain complete control of the 

design process. The designer can re-enable the disabled knowledge sources at any time 

during the design process. 
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CHAPTER 5 

AN APPLIACTION OF KNOWLEDGE ASSISTED DESIGN FOR FLYWHEELS 

A prototype knowledge assisted design system has been implemented to validate the 

design methodology presented in Chapters Three and Four. The design system is a domain 

independent framework that allows the designer to create a product model in a feature- 

based design environment and receive design support from multiple, autonomous 

knowledge sources via the interactive design assistant. This chapter presents the design 

environment and the system capabilities during a typical design session when applied to 

the design domain of engine flywheels, for which a set of features and knowledge sources 

were developed. 

5.1 The Design Environment 

The prototype knowledge assisted design environment is a domain independent design 

system that can be used for knowledge assisted product design, provided a set of features 

and knowledge sources are defined for a specific domain. The system was written in the 

Java programming language which was chosen because of its object-oriented framework 

and numerous built-in capabilities, such as platform independent graphics, string 

manipulation, and networking. The design system was tested on Silicon Graphics and Sun 

workstations, as well as Window's PCs, all using the same compiled code, a distinct 

benefit of the Java programming language. 



65 

File    Feature    Edit    Position    Knowledge   Sources 

Model flynheel 
Axis 

Type        Single Plate 
Depth Pot Type 
Size 45.0000 
Friction Type Dry 

Starter Mounting 
Type   None 
Gear- Clearance   78.0000 

Crankshaft Mounting Undercut 
Depth   5.0000 
Radius   6.0000 
Angle   15.0000 

Clutch Pilot Bearing Bore 
Radius   36.0000 
Depth   45.0OO0 
Surface Roughness   3.2 
Runout   0.1 
Psse«bly Runout   0.0 

i'"'- •"-L -—. •>"     Clutch Pilot Bearing Bore  —'*>. ptetiwe- Features _*,•    Clut< 

Figure 5-1. The Graphical User Interface 

The designer interfaces with the knowledge assisted design system using the graphical 

user interface (GUI) of the feature-based design environment shown in Figure 5-1. The 

GUI consists of three primary components. The first component is the menu bar that 

provides the designer all of the necessary commands for building a complete model. The 

designer may add features to the model, remove features from the model, edit the 

parameters and geometry of individual features, position features within the model, and 

enable and disable the knowledge sources. The second component of the design 

environment is the model visualization panel. This panel provides a dual graphical and 

textual representation of the model during the design process. The graphical 

representation displays the two-dimensional geometry of the features and their positions 

within the model. The designer can interactively pan and zoom the model view and select 



66 

individual features within the graphical panel. The textual representation presents each 

feature and its respective parameters and parameter values throughout the design process, 

which allows the designer to visualize both the non-geometric features of the model and 

the features that have not been positioned within the model. The third component of the 

design environment is the active feature choice selection, which allows the designer to 

select a particular feature to modify. The selection choice allows the designer to select 

those features that do not have a geometric representation or have not yet been presented 

graphically to the designer. 

The other components of the knowledge assisted design system, including the design 

assistant, the knowledge base, the model, the knowledge sources, and the features have 

also been implemented according to the framework established in the previous chapter and 

are written in the Java language. The remainder of this chapter discusses the application of 

the knowledge assisted design methodology to the design of engine flywheels, the features 

and knowledge sources developed for that purpose, and the designer-system interactions 

during a typical design session. 

5.2 The Design Domain 

The specific domain to which the knowledge assisted design methodology has been 

applied is the design of engine flywheels. An engine flywheel provides the mass and 

inertia necessary to minimize the fluctuations of the engine speed during load changes. 

The flywheel also provides the mounting surface for the ring gear used during engine 

starting, as well as the mounting surface, clearance, and driving face for the clutch. The 

features and the domain knowledge sources used for designing flywheels were developed 

in collaboration with the Cummins Engine Company according to the guidelines and 

procedures discussed in the previous chapters. 
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5.2.1 Flywheel Features 

The flywheel features were identified using the featurizing process. Drawings and 

designs of flywheels from over fifteen different engine families and five different clutch 

variations were examined to identify the features necessary to design flywheels. The 

geometry was simplified to a two dimensional cross-sectional representation because of 

the axi-symmetric nature of the flywheel geometry. From this process, thirty-five features 

were identified and are shown in Figure 5-2. Of those features, two are non-geometric, the 

clutch and the starter mounting. Four geometric elements were also identified: horizontal 

lines, vertical lines, angled lines, and arcs. 

Once the features of the flywheel were established, their engineering parameters were 

defined. The parameters for the flywheel features range from dimensions and tolerances to 

type identifiers, which implement both discrete and continuous value types. For example, 

the engine family feature has two parameters. The first, a discrete value type, allows the 

designer to identify the engine type from a pre-defined set of engine families. The second 

parameter of the engine family, the distance to the crankshaft mounting face, has a 

continuous parameter value type that identifies the distance from the engine block to the 

flywheel crankshaft mounting face. 

The final process of defining the flywheel feature set was identifying the positioning 

relations and geometric variability among the features. Four of the flywheel's features 

have dependent positioning properties: the web relief, the top relief, the clutch face relief, 

and the crankshaft mounting face. Of those dependent features, the crankshaft mounting 

face has fixed geometry, a single vertical line, and the others have variable geometry. The 

remaining flywheel features have independent positioning and fixed geometry patterns. 

None of the independent features were characterized with variable geometry. 
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1 - Axis 
2 - Clutch Pilot Bearing Bore 
3 - Pilot Bearing Bore Chamfer 
4 - Pilot Bearing Bore Hub 
5 - Clutch Face Relief 
6 - Spring Pocket Bore 

• 7 - Spring Pocket Bore Chamfer 
8 - Clutch Friction Face 
9 - Face to Bore Fillet 

10 - Face to Bore Undercut 
11 - Clutch Pilot Bore 
12 - Pilot Bore Chamfer 
13 - Clutch Mounting Face 
14 - Top Relief 
15 - Clutch Mounting Hole 
16 - Radial Clutch Pin Hole 
17 - Ring Gear Trunnion 
18-Ring Gear 
19 - Trunnion Chamfer 
20 - Web Relief 
21 - Supplier ID 
22 - Crankshaft Mounting Hub 
23 - Crankshaft Mounting Bore 
24 - Crankshaft Mounting Undercut 
25 - Crankshaft Mounting Face 
26 - Crankshaft Mounting Hole 

Counterbore 
27 - Crankshaft Mounting Hole 

Countersink 
28 - Crankshaft Mounting Hole 
29 - Puller Hole 
30 - Puller Hole Counterbore 
31 - Balance Holes 
32 - Engine 
33 - Flywheel Housing 
34 - Clutch 
35 - Starter Mounting 

Figure 5-2. Flywheel Features 

5.2.2 Flywheel Knowledge Sources 

The knowledge sources implemented for the flywheel are based on the Cummins 

Engine Company Flywheel Design Standard which incorporates Society of Automotive 

Engineers (SAE) and International Organization for Standardization (ISO) design 

standards [CUMM94]. While the design standards enforce some strict design rules that 

cannot be violated, most provide recommended parameter values, feature interactions, and 

engineering analyses for flywheel design. The variety of engineering knowledge contained 

within the standards provided a broad basis for testing the knowledge source framework. 
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class CrnkMtgHubPos extends KnowledgeSource 

{ 
public String^ triggerConditions() 

{ 
StringfJ trigger_conditions = {"Crankshaft Mounting Hub", "Crankshaft Mounting Bore"} 

} 

public void performAction() 

{ 
Feature Bore, Hub; 
Bore = Model.getFeature("Crankshaft Mounting Bore"); 
Hub = Model.getFeature("Cranksaft Mounting Hub"); 
Hub.Attach(0,Bore,0); 

} 
public boolean canPerformAction() 

{ 
Feature Hub; 
if (Model.featurelsThere("Crankshaft Mounting Hub")) 

if (Model.featurelsThere("Crankshaft Mounting Bore")){ 
Hub = Model.getFeature("Crankshaft Mounting Hub"); 
if (!Hub.positionRelationlsSet()) 

return true; 

} 
return false; 

} 
} 

Figure 5-3. Source Code for Hub Positioning Knowledge Source 

Over 140 knowledge sources were developed for the flywheel domain, and they are 

categorized into the modification, advisory, and analysis types. 

The modification knowledge sources interact with the model in three ways. First, 

positioning knowledge sources automatically define the positioning relations for the 

various features as they are added to the model. For example, referring again to Figure 5-2, 

when the crankshaft mounting hub is added to the model, a knowledge source 

automatically defines a positioning relation to attach it to the crankshaft mounting bore. 

These knowledge sources were chosen to present themselves automatically because the 

positions of the features are well established for the flywheel. The designer can, however, 
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modify the positioning relations during the design process to test unique positioning 

scenarios. The Java source code for this knowledge source is shown in Figure 5-3. 

The second type of modification knowledge source implemented for the flywheel 

involves those rules that define the parameter values of particular features within the 

model. Several knowledge sources apply these standards to the model and present 

themselves to the designer interactively. For example, the SAE flywheel standards define 

the number of radial clutch pin holes based on the clutch type. The source code for this 

knowledge source is shown in Figure 5-4. 

The third type of modification knowledge sources established for the flywheel involve 

those that add features to the model or remove them based on certain characteristics of the 

model. If, for example, the designer chooses to add a face-to-bore fillet to a flywheel that 

already has a face-to-bore undercut, the undercut must be removed from the model before 

the fillet is added. Several knowledge sources have been implemented to identify these 

types of situations and modify the model accordingly. Once again, these knowledge 

sources present themselves interactively, allowing the designer to control their application. 

The second type of knowledge source, the advisory knowledge source, was utilized to 

present information to the designer for domain knowledge that did not specify specific 

changes to features or the model. For example, the Cummins Flywheel Design Standard 

recommends a range for the crankshaft mounting undercut dimensions based on the 

engine type. Ranges of dimension values, not specific values, are recommended, so the 

knowledge source only presents those ranges to the designer and leaves the responsibility 

of modifying the parameter values to the designer. 

The final type of modification knowledge source implemented for the flywheel design 

process is the analysis knowledge source. One example of this type of knowledge source 

involves the diameter of the crankshaft mounting hole countersink and. the remaining 

clearance around the holes, as shown in Figure  5-5. The surface area around the holes 
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class PinHoleNumber extends KnowledgeSource implements Dialogable 

{ 
public StringD triggerConditions() 

StringQ trigger_conditions = {"Clutch", "Radial Clutch Pin Holes"} 

public void createDialog(DesignEnv FBDE) 

KSD = newYesNoDialog(FBDE.this); 

public void initDialog(KnowledgeSourceDialog KSD) 

KSD.setText(The number of pin holes should be 12 tor this clutch type. Do you wish to 
change it?"); 

public void performAction() 

Feature PinHoles= Model.getFeature("Radial Clutch Pin Holes"); 
PinHoles.setParameterValue("Number of Holes", 12); 

public boolean canPerformAction() 

Feature Clutch, Holes; 
if (Model.featurelsThere("Clutch")) 

if (Model.featurelsThereCRadial Clutch Pin Holes")){ 
Hub = Model.getFeaturefCrankshaft Mounting Hub"); 
Clutch = Model.getFeature("Clutch"); 
if (Clutch.getParameterValue(Type") == Clutch.POT){ 

if (Clutch.getParameterValue("Number of Holes") != 12) 
return true; 

} 
} 

return false; 

} 
} 

Figure 5-4. Java Source Code for Parameter Modification Knowledge Source 

must be a certain percentage of the hole diameter. The knowledge source responsible for 

applying this rule calculates whether the necessary clearance is available based on the 

positions and dimensions of the crankshaft mounting undercut, the crankshaft mounting 

bore, and the crankshaft mounting holes. If the necessary clearance is not available, the 

knowledge source calculates the possible diameter changes of the holes and the bore and 
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UNDERCUT INTERSECTS 
COUNTERSINK 

UNACCEPTABLE ACCEPTABLE 

Figure 5-5. Crankshaft Mounting Hole Clearance (Courtesy of Cummins Engine 
Company, Inc.) 

presents them to the designer. Just as for the advisory knowledge sources, the designer is 

then responsible for making the appropriate changes to the model. 

5.3 The Flywheel Design Process 

The design process for the flywheel begins when the designer instantiates a new 

model. The system prompts the designer to specify the domain of the model to create. As 

shown in Figure 5- 6, after the designer has specified the design domain, in this case the 

flywheel, the system dynamically loads both the flywheel knowledge sources and feature 

v\k»onse<VAaMKi.Ptz wBmmm*^*mtt"*:-<*x^z*;?±!i 
Pile     Fatturt     £dlt.    Poii«ion     roovladqa    Sources 

mv*^P«m^A^^^^i^r^^^^^smi^ 

i*-fctKb Z. tw  Dscan 3u»»^n ÄSl 

Fil«    Fe«tnr«    Edit    Pailtlan    Knovl«dtj i   Souroti 

.. .-X^A:        ^:;/.::W;:^:^:^<^^»m:<^,    '^S: .            f 
LoadfaS f lg»h«i fBOtiros and towla&t soutes,„ 

Figure 5-6. Domain Specification and Dynamic Knowledge Source and Feature Loading 
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set and establishes a design assistant to begin monitoring any modifications to the model. 

The design process proceeds from the start-up feature modification stage to feature 

modification. 

5.3.1 Start-Up Feature Modification 

After the FBDE and the design assistant load the flywheel features and knowledge 

sources into the system, respectively, the FBDE prompts the designer, as shown in Figure 

5-7, to define the parameter values for the various start-up features. Four features have 

been identified as the start-up features for the flywheel: the engine family, the clutch, the 

flywheel housing, and the starter mounting. At this time, the designer can either choose to 

5K$'; tyw&^'Sftt~tpintfaty»atkm **-■•'; v-r* £   > ■ 
C Lutch        T"-ä>I             ^one_ 

Bopth          ►*ne      — •     Size | 0.0000 

lp'           ■        *       )ry 1 
Starter Mounting 

jpi Tyßtif* ^               None               ££a 

3-:«r ZLuereeKU     [ O.CuOC 

Engine  Ffwoiiy         T^» tone 

Distance to Mounting Foes    ( 2.Q£0t> 

Flkjuneei  Housing   TtflXJ J 
DiEtance To HotJTtina Face     • )tP<W)Q, ^ 

■ ! 

Bare Dlaneter    I410.CO00 DeDth    IT I .o«9eoo-r-| 

SflE Hoirtin* Nu»ber      Hona —< _^sJ. '-EEli 

Figure 5-7. Start-Up Feature Modification 

define these features or cancel to proceed directly to the functional and geometric feature 

modification stages of the design process. If the designer chooses to define the parameter 

values, the features need not be completely defined. For this example, the parameter 
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values are partially defined. Once the designer is satisfied with the parameter values, he or 

she disposes the dialog and the design process enters the feature modification stage. 

5.3.2 Feature Modification 

The FBDE adds the start-up features to the model, once they have been defined. The 

design assistant observes these modifications and presents them to the knowledge sources. 

Several knowledge sources are triggered by the modifications and found to be applicable 

to the current state of the model. Consider the knowledge source shown in Figure 5-8. The 

^mimiteäge^öär^AaMi^~r.-!$^%m,~:,;■. \,;;;•:■ j 

This engine Family requires a Crankshaft 
Mounting Undercut. Do you want to add it? 

Ves ancf Keep Enabled 1 BSJ   Yes and Disable Interact lent 

Figure 5-8. Knowledge Source Presentation Dialog 

design assistant presents the designer with a knowledge source that recommends that a 

crankshaft mounting undercut should be added to the model because of the engine family 

chosen during the start-up feature modification. The designer has three options for 

applying this knowledge source to the model. First, the designer can accept the knowledge 

source's action and keep its interactive presentation enabled. The knowledge source will 

continue to contribute to the design process and present itself interactively. For example, if 

the designer were to delete the undercut, this knowledge source would once again present 

itself. Second, the designer can decline to accept the knowledge source's action. If this 

option is selected, the system prompts the designer, as shown in Figure 5-9, to provide an 



75 

Please Enter Reason for Violation 

The crankshaft mounting undercut will not be 
necessary because of the flange diameter for 
this appliaction. 

/ 

Figure 5-9. Rule Violation Explanation Dialog 

explanation of why the knowledge source's actions were not accepted. The system stores 

this information in a design log along with the model data that can be accessed at a later 

time. If this option is selected, the system disables the knowledge source, and it will not 

contribute to the design process until the designer chooses to enable it. Third, the designer 

can accept the action and disable the knowledge source from interactively presenting itself 

during the design process. The knowledge source participates in the design process but 

applies itself automatically. 

After all of the start-up features have been added to the model and the applicable 

knowledge sources have presented themselves to the designer, the designer is free to add, 

remove, and edit features in any arbitrary order. The design assistant reacts to any of these 

design changes and presents the applicable knowledge sources to the designer. If, for 

example, the designer chooses to add the crankshaft mounting bore to the model, three 

events would occur. First, the FBDE adds the bore to the model structure. Second, the 

design assistance recognizes this change and presents it to the knowledge sources. The 

design assistant then presents the applicable knowledge sources to the designer, and the 

knowledge sources make their respective feature modifications. In this case, some of the 

bore's parameter values are changed, and both the bore and the undercut are positioned in 

the model. The third event is the graphical presentation of those features that are 
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Figure 5-10. Graphical Presentation of Features 

completely defined and positioned within the model. As shown in Figure 5-10, the 

designer has completely defined the engine family, flywheel housing, crankshaft mounting 

bore, and crankshaft mounting undercut. They are completely positioned in the model and 

are presented graphically. It should also be noted that the other features that have been 

added to the model are presented textually. 

Most of the flywheel feature positioning relations are established by automatic 

knowledge sources. If the knowledge sources are disabled, however, or the positioning 

relations are not completely defined by the knowledge sources, the designer can define the 

positioning relations for a particular feature. Consider the puller hole feature that the 

designer has added to the model and defined completely, as shown in Figure 5-11(a). The 

feature is not presented graphically because it has not been positioned. The designer can 

position the feature horizontally and vertically using the positioning dialog shown in 

Figure 5-11(b). In this example, the designer is positioning the vertical position of the 

puller holes with respect to the axis and offset from the axis by the puller holes' pattern 



77 

L*11V-*>4lt«*:'-Miv;r♦»i(a*tt-->Ia»«l<K*4»:'»*»ew*« <\ 

BidUs T5.0000 

CWlOt Pilot hrln Bora 
fedfcn        3.0000 
DartA        15.0000 
5tr-r» toutfrra       3.2 
ftraut        0.1 
Ifcinnlw AmA        0.0 

MM Ira        0.0 
Su-fta ta«mti      3J 
AnxA 0.0 
Pmllalla        0.0 

Ctuteti Pilot Bvlni feb 

Pultwttaln 

niEäuwn      «5,0000 

__ S.0000 
»•111 Dnth        15.0000 
T«o Owth       0.0000 
K«Mr Of Hal«       2 
A-wl« Of Saoa-Micn       45.0 
Pattvri fedtuc        25.0000 

»r5^ÄÄ#»ftf««ewöfww?iki( 

fefvwc* (tandl* m F~ 

ü>*waxg FM*JTB 'IM* k.U 

*t»2«ff^ HrdlB ID ■ Es^ rpnvia« offcsr 

ötVwt FtsUra MM .d&rifajHr ' - 

|;    v ^fsefc Paratfttsr fens Pat»*« feuja 

.- ii5«crtivf> Offsat "A U9 K8J BBl 

(a) Fully Defined Puller Holes (b) Positioning Dialog 

PILa    F«*rur«    t-Jlt   ro.Lt«-»    I»»«li<<i   -»«a*...««; 

Or«**«« Itauntir« Bora 
«■JUn       75.« 
Dntn      13.00 

fcmut       2.0 
AEMPDIU ftraut        1.0 
Oati*        A 

Clutch PllDt tarlr« Bar* 
Rsjlui        5.0000 
bptrt      15.0000 

O-anMraft Ituitir« F*o 

araut        0.0 
Prallalisi        0.0 
Dah*        n 

DlaaUr        5.0000 
Drill Earth        15.0000 
Tm DwUi        O.OOOO 
N*tar Of »1*»        3 
Pr«la Of SKwration 
Prttam Ibdlui        25.01 

(c) Graphical Display 

Figure 5-11. Puller Hole Position Modification 

radius. The designer defines the puller hole horizontal position similarly, and the system 

displays the holes as shown in Figure 5-11(c). 

At any time during the design process, the designer can select a feature in the model 

and edit its parameter values. In doing so, the system presents a dialog to the designer in 

which the various parameters of the feature can be modified, as shown for editing the 

clutch in Figure 5-12. Parameters with continuous values are presented with their value 

field as an editable text area, such as the clutch size. The discrete values, such as the clutch 
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Figure 5-12. Clutch Edit Dialog 

friction type, are presented to the designer with the possible parameter values from which 

to choose. 

5.3.3 Variable Geometry Feature Modification 

If the designer selects a variable geometry feature to edit, he or she can edit or define 

its geometric elements along with its parameter values. If the feature's position is 

dependent, the designer cannot define its geometry until both of the dependency 

declarations have been assigned. Consider the flywheel's web relief, which is a dependent 

position, variable geometry feature. Once the designer has added the ring gear trunnion 

and the crankshaft mounting hub to and positioned them in the model, the web relief's 

geometry can then be defined. 

The designer defines the feature's geometry in the design environment shown in 

Figure 5-13. As the geometric elements are added to the model, the designer can edit their 

parameter values and define the horizontal and vertical variants. In this case, the horizontal 

line has been assigned as the horizontal variant, and the vertical line has been assigned as 

the vertical variant. The designer can then constrain the feature and view the resulting 
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(b) Constrained Geometry 

Figure 5-13. Web Relief Geometry Specification 

geometry, as shown in Figure 5-13(b). Once the geometry has been completely defined, 

then designer exits this design environment and returns to the feature-based design 

system.Creating A Solid Model 

After the designer has added all of the necessary features to the flywheel model, the 

system can build a three dimensional solid model of the flywheel to better visualize the 

completed design. The prototype design system creates the solid model using the Java- 

TWIN solid modeling package and renders it for presentation to the designer using a Java 

port of Silicon Graphics' Open-GL graphics library [CADL91]. The system builds the 

flywheel solid model by rotating the cross section outline 360 degrees about the flywheel's 

axis. The rendering of the completed three-dimensional flywheel model is shown along 

with the two-dimensional cross section and textual representations in Figure 5-14. 
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81 

CHAPTER 6 

CONCLUSION 

Computer-aided design systems have become an integral part of the modern design 

process. While today's CAD tools provide support for drafting, geometric modeling, and 

computational engineering analysis, they do not serve as interactive, knowledgeable 

support tools for the design process. This can be attributed to fact that conventional CAD 

methodologies do not integrate experiential engineering knowledge into the design 

process. Designers must draw upon their past experiences and design knowledge during 

the design process, just as they did before the advent of CAD. 

This research developed a computer-aided design methodology for integrating 

engineering knowledge in a CAD environment that provides dynamic, interactive, 

knowledgeable design assistance for a design process that is completely directed by the 

designer. The contributions of the knowledge assisted design methodology can be 

summarized in two areas. First, the model and knowledge representations have resolved 

many of the inadequacies of the representations used in past AI-base CAD systems. They 

are extensible to varied design domains by the design engineer. The representations also 

facilitate the desired design assistance during the design process. In addition, the product 

model created during the design process defines both the geometric and non-geometric 

properties of the design artifact, unlike past research efforts in this field. The second area 

of contribution is the development of a domain independent framework for building a 

knowledge assisted design environment. The resulting system integrates the designer, the 

model, and the engineering knowledge in an environment in which the designer maintains 
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control of a design process interactively supported by the engineering knowledge. The 

knowledge sources that apply themselves opportunistically to the developing design 

solution. They also serve as a repository for designers' knowledge well after they leave the 

organization. 

6.1 Future Research and Development 

While the knowledge assisted design methodology contributes to the research in this 

area, there are a number of areas in which further research and development could 

improve the methodology. The methodology presents a sound, domain independent 

framework that could be applied to any design domain, provided the appropriate set of 

features and knowledge sources were implemented for that domain. It was, however, only 

validated with the engine flywheel design example. The flywheel proved to be a broad and 

well documented test scenario. A large amount of engineering information was available 

for the flywheel product model, and the variability in the flywheel features and creativity 

required during the design process fit well into a design assistance framework. The 

flywheel features and design rules were well documented prior to the start of the research, 

and the axisymmetric, two dimensional nature of the flywheel's geometry also greatly 

reduced the geometric complexity of the positioning algorithms and feature definitions. To 

further develop the methodology and reveal any development issues not encountered 

during the flywheel implementation, the methodology should be tested using a variety of 

design domains. 

In particular, two specific properties of design domains should be tested. First, a 

domain in which the geometry cannot be simplified to a two-dimensional cross-section 

representation would test the implications of more complex geometric properties of the 

model with the knowledge source interactions. This would also necessitate the 

implementation of a constraint management package within the design environment, 
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thereby increasing the capabilities of the designer and the knowledge sources to define 

relationships between features within the model. The second domain property that should 

be validated is a feature definition process that is not as clear as it was for the flywheel. 

Although the features developed for this research proved successful for the flywheel, this 

modeling paradigm may not fit well into other design domains. In that case, an alternate 

model structure would have to be developed to accommodate those situations. 

Another important area of future research that was somewhat addressed in this work is 

the concept of using distributed knowledge sources and feature bases from a centrally 

located knowledge assisted design environment, or using centrally located knowledge and 

feature bases from distributed design environments. While this was not implemented in 

the prototype design environment, the framework was specifically designed to facilitate 

the development of these capabilities. The Java programming language was used not only 

because of its platform independent properties and well developed object-oriented 

programming framework and because of the sophisticated networking capabilities built 

into the language, such as Remote Method Invocation (RMI). The knowledge sources and 

features are both maintained as separate objects within the design environment 

framework, and extending the system to utilize these objects if they are located on remote 

computer systems would not be a difficult task. However, the use of distributed objects 

does bring about a number of other research issues such as access and control that would 

need to be addressed. 

While the use of distributed objects in the knowledge assisted design environment 

may bring about some control issues not yet encountered, another area of research for the 

design methodology in its current, non-distributed state is the issue of knowledge source 

action control. Although the control algorithm can identify loops and conflicts during the 

knowledge source application process, more sophisticated control algorithms could be 

developed that resolve some of the obvious conflicts without involving the direct action of 
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the designer. In addition, if the number of knowledge sources increases by a factor of 10 

or 100, more sophisticated algorithms would have to be developed to increase the 

efficiency of the knowledge source query process. 

A research issue that would greatly contribute to the capabilities of the methodology is 

the development of knowledge source and feature development environments. One of the 

primary issues in this work was to develop model and knowledge representations that 

could be adapted to any design domain by an engineer without involving a specialized 

knowledge engineer. While the representations are relatively straight forward and easy to 

extend, the creation of knowledge source and feature development environments would 

further reduce the complexity involved in extending the knowledge assisted design 

methodology to a specific domain. In particular, a knowledge source development 

environment could verify that a knowledge source's action does not conflict with any other 

knowledge source action before adding it to the set of available knowledge sources. 

In addition to the suggestions for future research presented in this section, a number of 

conventional CAD capabilities such as finite element analysis and manufacturability 

analysis could be added to the design environment to further support the entire design 

process. The intent of the knowledge assisted design methodology is to provide a flexible 

framework that can be applied to numerous design scenarios in which the integration of 

experiential engineering knowledge and conventional CAD methodologies will contribute 

to the overall success of a completed product model. 
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